Cortisol
Cat # 6101Z

INTENDED USE
Competitive immunoenzymatic colorimetric method for quantitative determination of Cortisol concentration in serum and plasma.

CLINICAL SIGNIFICANCE
Cortisol is a steroid hormone released from the adrenal cortex in response to a hormone called ACTH (produced by the pituitary gland), it is involved in the response to stress; it increases blood pressure, blood sugar levels, may cause infertility in women, and suppresses the immune system. Cortisol acts through specific intracellular receptors and has effects in numerous physiologic systems, including immune function, glucose-counter regulation, vascular tone, substrate utilization and bone metabolism. Cortisol is excreted primarily in urine in an unbound (free) form. Cortisol is bound, in plasma, from corticosteroid-binding globulin (CBG, transcotin), with high affinity, and from albumin. Only free cortisol is available to most receptors. The amount of cortisol present in the serum undergoes diurnal variation, with the highest levels present in the early morning, and lower levels in the evening, several hours after the onset of sleep. Highest levels are at about 6-8 a.m. and lowest levels are at about midnight. These normal endogenous functions are the basis for the physiological consequences of chronic stress - prolonged cortisol secretion causes muscle wastage, hyperglycaemia, and suppresses immune / inflammatory responses. The same consequences arise from long-term use of glucocorticoid drugs.

PRINCIPLE
Cortisol (antigen) in the sample competes with horseradish peroxidase-Cortisol (enzyme-labelled antigen) for binding onto the limited number of anti-Cortisol (antibody) sites on the microplates (solid phase). After incubation, the bound/free separation is performed by a simple solid-phase washing.
The enzyme substrate (H₂O₂) and the TMB-Substrate (TMB) are added. After an appropriate time has elapsed for maximum colour development, the enzyme reaction is stopped and the absorbencies are determined. Cortisol concentration in the sample is calculated based on a series by a set of standard. The colour intensity is inversely proportional to the Cortisol concentration in the sample.

REAGENT, MATERIAL AND INSTRUMENTATION

Reagent and material supplied in the kit

1. **Cortisol Standards 5x** (1 vial = 1 mL)
 - STD0: REFDAS0/6101Z
 - STD1: REFDAS1/6101Z
 - STD2: REFDAS2/6101Z
 - STD3: REFDAS3/6101Z
 - STD4: REFDAS4/6101Z

2. **Conjugate** (1 bottle) 21.0 mL
 Cortisol-HRP conjugate: REFDa-C/6101Z

3. **Coated Microplate**
 Anti-Cortisol-IgG adsorbed on microplate
 (1 microplate breakable): REFDA-P/6101Z

4. **TMB-substrate** (1 bottle) 12 mL
 H₂O₂,TMB 0.25gr/L
 (avoid any skin contact): REFDA-T/6101Z

5. **Stop solution** (1 bottle) 12 mL
 Sulphuric acid 0.15 mol/L
 (avoid any skin contact): REFDA-S/6101Z

Reagents necessary not supplied
Distilled water.

Auxiliary materials and instrumentation
Automatic dispenser.
Microplates reader

Notes

Store all reagents between +2 and + 8°C in the dark. Open the bag of reagent 3 (Antibody) only when it is at room temperature and close immediately after use. Do not remove the adhesive sheets on the unused strips. The kit once is open, it is stable up to expiration date.

PRECAUTION

- Do not use heavily haemolysed samples.
- Maximum precision is required for reconstitution and dispensation of the reagents.
- Avoid the exposure of reagent TMB/H2O2 to directed sunlight, metals or oxidants.
- This method allows the determination of Cortisol from 10 ng/mL to 500 ng/mL.
- The clinical significance of the Cortisol determination can be invalidated if the patient was treated with corticosteroids or natural or synthetic steroids.
PROCEDURE

1. Preparation of the Standard (S₀,S₁,S₂,S₃,S₄)
 The standard has the following concentration of Cortisol:
 \[
 \begin{array}{ccccc}
 & S_0 & S_1 & S_2 & S_3 & S_4 \\
 \text{ng/ml} & 0 & 10 & 50 & 150 & 500
 \end{array}
 \]
 Stability: until the expiration date printed on the kit.
 Once open are stable for six months at +4°C.

2. Preparation of the Sample
 The determination of Cortisol can be performed in plasma as well as in serum.
 Store the sample at -20°C if the determination is not performed on the same day of the sample connection.

3. PROCEDURE
 As it is necessary to perform the determination in duplicate, prepare two wells for each of the five points of the standard curve (S₀-S₄), two for each sample and one for Blank.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Standard</th>
<th>Sample</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard S₀-S₄</td>
<td>20 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples</td>
<td>20 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate</td>
<td>200 µL</td>
<td>200 µL</td>
<td></td>
</tr>
<tr>
<td>TMB substrate</td>
<td>100 µL</td>
<td>100 µL</td>
<td>100 µL</td>
</tr>
<tr>
<td>Stop solution</td>
<td>100 µL</td>
<td>100 µL</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

Incubate 1 hour at 37°C.
Remove the contents from each well; wash the wells with 300 µL of distilled water. Repeat the washing procedure by draining the water completely.

Incubate 15 minutes in the dark at room temperature (20-25°C).

Read the absorbance (E) at 450 nm against Blank

QUALITY CONTROL
Each laboratory should assay controls at normal, high and low levels range of Cortisol for monitoring assay performance. These controls should be treated as unknowns and values determined in every test.
procedure performed. Quality control charts should be maintained to follow the performance of the supplied reagents. Pertinent statistical methods should be employed to ascertain trends. The individual laboratory should set acceptable assay performance limits. Other parameters that should be monitored include the 80, 50 and 20% intercepts of the standard curve for run-to-run reproducibility. In addition, maximum absorbance should be consistent with past experience. Significant deviation from established performance can indicate unnoticed change in experimental conditions or degradation of kit reagents. Fresh reagents should be used to determine the reason for the variations.

LIMITATION OF PROCEDURE

1. **Assay Performance.**
Sample(s), which are contaminated microbiologically, should not be used in the assay. Highly lipemic or haemolysed specimen(s) should similarly not be used. It is important that the time of reaction in each well is held constant for reproducible results. Pipetting of samples should not extend beyond ten minutes to avoid assay drift. If more than one plate is used, it is recommended to repeat the dose response curve. Addition of the substrate solution initiates a kinetic reaction, which is terminated by the addition of the stop solution. Therefore, the addition of the substrate and the stopping solution should be added in the same sequence to eliminate any time deviation during reaction. Plate readers measure vertically. Do not touch the bottom of the wells. Failure to remove adhering solution adequately in the aspiration or decantation wash step(s) may result in poor replication and spurious results.

2. **Interpretation.**
If computer controlled data reduction is used to calculate the results of the test, it is imperative that the predicted values for the calibrators fall within 10% of the assigned concentrations.

RESULTS

1. **Mean Absorbance**
Calculate the mean of the absorbance (Em) for each point of the standard curve and of each sample

2. **Standard Curve**
Plot the mean value of absorbance of the standards (Em) against concentration. Draw the best-fit curve through the plotted points. (es: Four Parameter Logistic).

3. **Calculation of Results**
Interpolate the values of the samples on the standard curve to obtain the corresponding values of the concentrations expressed in ng/mL.

REFERENCE VALUE
The serum or plasma Cortisol reference value are:

60 - 230 ng/mL between 8.00 – 10.00 A.M.
30 – 150 ng/mL at 4.00 P.M.

Patient treated with ACTH: 280 - 600 ng/mL
Patient treated with dexamethasone:0 - 50 ng/mL

PERFORMANCE AND CHARACTERISTICS

1. **Precision**
2. Intra Assay Variation
Within run variation was determined by replicate determination (16x) of two different control sera in one assay. The within assay variability is 7%.

3. Inter Assay Variation
Between run variation was determined by replicate measurements of three different control sera in 2 different lots. The between assay variability is 9.32%.

4. Specificity
The cross reaction of the antibody calculated at 50% according to Abraham are shown in the table:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Reaction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>100</td>
</tr>
<tr>
<td>Cortisone</td>
<td>10.8</td>
</tr>
<tr>
<td>11α deoxycortisol</td>
<td>18.7</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>2.4</td>
</tr>
<tr>
<td>Progesterone</td>
<td>0.1</td>
</tr>
<tr>
<td>Aldosterone</td>
<td>1x10⁻²</td>
</tr>
<tr>
<td>11α OH Progesterone</td>
<td>1x10⁻²</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>< 1x10⁻⁶</td>
</tr>
</tbody>
</table>

5. Accuracy
The recovery of 50 – 100 – 200 – 400 ng/mL of Cortisol added to samples gave an average value (±SD) of 101.2% ± 6.65% with reference to the original concentrations.

6. Sensitivity
The lowest detectable concentration of cortisol that can be distinguished from the zero standard is 5 ng/ml at the 95% confidence limit.

7. Correlation with RIA
The DAI Cortisol ELISA was compared to another commercially available Cortisol assay. Serum samples of 33 females and 30 males were analysed according in both test systems. The linear regression curve was calculated
\[y = 0.944 x + 3.2 \]
\[r = 0.98 \ (r^2 = 0.96) \]

8. Hook Effect
The Cortisol ELISA, a competitive enzyme immunoassay, shows no Hook Effect up to 1000 ng/ml

WASTE MANAGEMENT
Reagents must be disposed off in accordance with local regulations.

BIBLIOGRAPHY
