TEST PRINCIPLE

The Diagnostic Automation, Inc. IFA AMA test system is a prestandardized assay designed to detect the presence of MA in human sera. The system employs rat kidney tissue substrate and anti-human immunoglobulin conjugate adjusted for optimum use dilution with minimum background staining. The reaction occurs in two steps:

1. The first involves the interaction of MA in the patient serum with the mitochondrial antigens localized in the rat kidney distal tubular epithelium.
2. The second step is the reaction between the conjugate and MA attached to the mitochondrial antigens producing apple-green staining in a positive assay. (See Assay Procedure section for details).

SPECIMEN COLLECTION AND PREPARATION

1. DAI recommends that the user carry out specimen collection in accordance with CLSI document M29: Protection of Laboratory Workers from Occupationally Acquired Infectious Diseases. No known test method can offer complete assurance that human blood samples will not transmit infection. Therefore, all blood derivatives should be considered potentially infectious.
2. Use only freshly drawn and properly refrigerated sera obtained by approved septic venipuncture procedures with this assay. Do not add anticoagulants or preservatives. Avoid using hemolyzed, lipemic, or bacterially contaminated sera.
3. Store sample at room temperature for no longer than 8 hours. If testing is not performed within 8 hours, sera may be stored between 2-8°C, for no longer than 48 hours. If delay in testing is anticipated, store test sera at -20°C or lower. Avoid multiple freeze/thaw cycles which may cause loss of antibody activity and give erroneous results. It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine stability criteria for its laboratory.

MATERIALS AND COMPONENTS

Materials provided with the test kits

Each Test System contains the following components in sufficient quantities to perform the number of tests indicated on packaging label.

NOTE: Conjugate and Controls contain a combination of Proclin (0.05% v/v) and Sodium Azide (<0.1% w/v) as preservatives. Sample Diluent contains Sodium Azide (<0.1% w/v) as a preservative.

Reactive Reagents

1. Rat kidney substrate slides: Ten, 6-well slides with absorbent blotter and desiccant pouch.
2. Conjugate: Goat anti-human immunoglobulin (polyvalent) labeled with fluorescein isothiocyanate (FITC). Contains phosphate buffer with BSA and counterstain. One, 3.5 mL, clear capped bottle. Ready to use.
3. Positive Control (Human Serum): Will produce mitochondrial staining of rat kidney substrate. One, 0.5mL, red-capped, vial. Ready to use.
4. Negative Control (Human Serum): Will produce no mitochondrial staining. One, 0.5mL, green-capped vial. Ready to use.
5. Sample Diluent: One, 30 mL, green-capped, bottle containing phosphate-buffered-saline. Ready to use. **Note:** The Sample Diluent will change color when combined with serum.
6. Phosphate-buffered-saline (PBS): pH 7.2 ± 0.2. Empty contents of each buffer packet into one liter of distilled or deionized water. Mix until all salts are thoroughly dissolved. Four packets, sufficient to prepare 4 liters.

Mounting media (Buffered Glycerol): Two, 3.0 mL., white-capped, dripper tipped vials.

Note: Kit also contains:

1. Component list containing lot specific information is inside the kit box.
2. Package insert providing instructions for use.

Materials required but not provided

1. Small serological, Pasteur, capillary, or automatic pipettes.
2. Disposable pipette tips.
3. Small test tubes, 13 x 100mm or comparable.
4. Test tube racks.
5. Staining dish. A large staining dish with a small magnetic mixing set is an ideal mechanism for washing slides between incubation steps.
6. Cover slips, 24 x 60mm, thickness No. 1.

Table:

<table>
<thead>
<tr>
<th>Test</th>
<th>AMA IFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Indirect Fluorescent Antibody Method</td>
</tr>
<tr>
<td>Principle</td>
<td>Qualitative & Semi Quantitative</td>
</tr>
<tr>
<td>Sample</td>
<td>10 µL</td>
</tr>
<tr>
<td>Total Time</td>
<td>70 - min.</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>12 Months from the manufacturing date</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100 %</td>
</tr>
<tr>
<td>Specificity</td>
<td>100 %</td>
</tr>
</tbody>
</table>
7. Distilled or deionized water.
8. Properly equipped fluorescence microscope.
9. 1 Liter Graduated Cylinder.
10. Laboratory timer to monitor incubation steps.
11. Disposal basin and disinfectant (i.e. 10% household bleach - 0.5 % Sodium Hypochlorite).

The following filter systems or their equivalent have been found to be satisfactory for routine use with transmitted or incident light darkfield assemblies:

<table>
<thead>
<tr>
<th>TRANSMITTED LIGHT</th>
<th>Light Source: Mercury vapor 200W or 50W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation Filter</td>
<td>Barrier Filter</td>
</tr>
<tr>
<td>KP490</td>
<td>K510 or K530</td>
</tr>
<tr>
<td>BG12</td>
<td>K510 or K530</td>
</tr>
<tr>
<td>FITC</td>
<td>K520</td>
</tr>
<tr>
<td>Light Source: Tungsten – Halogen 100W</td>
<td></td>
</tr>
<tr>
<td>KP490</td>
<td>K510 or K530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCIDENT LIGHT</th>
<th>Light Source: Mercury Vapor 200, 100, 50 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation Filter</td>
<td>Barrier Filter</td>
</tr>
<tr>
<td>KP500</td>
<td>TK510</td>
</tr>
<tr>
<td>FITC</td>
<td>TK510</td>
</tr>
<tr>
<td>Light Source: Tungsten – Halogen 50 and 100 W</td>
<td></td>
</tr>
<tr>
<td>KP500</td>
<td>TK510</td>
</tr>
<tr>
<td>FITC</td>
<td>TK510</td>
</tr>
</tbody>
</table>

PRECAUTIONS

1. For In Vitro Diagnostic Use
2. Follow normal precautions exercised in handling laboratory reagents. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.
3. The wells of the Slide do not contain viable organisms. However, consider the Slide potentially bio-hazardous materials and handle accordingly.
4. The Controls are potentially bio-hazardous materials. Source materials from which these products were derived were found negative for HIV-1 antigen, HBsAg and for antibodies against HCV and HIV by approved test methods. However, since no test method can offer complete assurance that infectious agents are absent, these products should be handled at the Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual “Biosafety in Microbiological and Biomedical Laboratories”: current edition; and OSHA’s Standard for Bloodborne Pathogens (20).
5. Adherence to the specified time and temperature of incubations is essential for accurate results. All reagents must be allowed to reach room temperature (20-25°C) before starting the assay. Return unused reagents to their original containers immediately and follow storage requirements.
6. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual PBS, by blotting, before adding Conjugate. Do not allow the wells to dry out between incubations.
7. The Sample Diluent, Conjugate, and Controls contain Sodium Azide at a concentration of <0.1% (w/v). Sodium Azide has been reported to form lead or copper azides in laboratory plumbing which may cause explosions on hammering. To prevent, rinse sink thoroughly with water after disposing of solution containing Sodium Azide. This preservative may be toxic if ingested.
8. Dilution or adulteration of these reagents may generate erroneous results.
9. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin and mucous membranes.
10. Avoid microbial contamination of reagents. Incorrect results may occur.
11. Cross contamination of reagents and/or samples could cause erroneous results.
12. Reusable glassware must be washed and thoroughly rinsed free of all detergents.
13. Avoid splashing or generation of aerosols.
14. Do not expose reagents to strong light during storage or incubation.
15. All components are stable until the expiration date printed on the label, provided the recommended storage conditions are strictly followed. Do not use beyond the expiration date. Do not freeze.
16. Do not allow slides to dry during the procedure. Depending upon lab conditions, it may be necessary to place slides in a moist chamber during incubations.

ASSAY PROCEDURE

1. Remove slides from refrigerated storage and allow them to warm to room temperature (20-25°C). Tear open the protective envelope and remove slides. DO NOT APPLY PRESSURE TO FLAT SIDES OF PROTECTIVE ENVELOPE.
2. Identify each well with the appropriate patient sera and Controls. NOTE: The Controls are intended to be used undiluted. Prepare a 1:10 dilution (e.g.: 10 µl serum + 90 µl of diluent) of each patient serum. The Sample Diluent will undergo a color change confirming that the specimen has been combined with the Diluent.
 a. Users may titrate the Positive Control to endpoint to serve as a semi-quantitative (1+ Minimally Reactive) Control. In such cases, the Control should be diluted two-fold in the Diluent. When evaluated by DAI, an endpoint dilution is established and printed on the Positive Control vial (+ one dilution). It should be noted that due to variations within the laboratory (equipment, etc.), each laboratory should establish its own expected end-point titer for each lot of Positive Control.
 b. When titrating patient specimens, initial and all subsequent dilutions should be prepared in Sample Diluent or PBS only.
3. With suitable dispenser (listed above), dispense 20µl of each Control and each diluted patient sera in the appropriate wells.
4. Incubate Slides at room temperature (20 - 25°C) for 30 minutes.
5. Gently rinse Slides with PBS. DO NOT DIRECT A STREAM OF PBS INTO THE test wells.
6. Wash Slides for two, 5 minute intervals, changing PBS between washes.
7. Remove Slides from PBS one at a time. Invert Slide and key wells to holes in blotters provided. Blot Slide by wiping the reverse side with an absorbent wipe. CAUTION: Position the blotter and Slide on a hard, flat surface. Blotting on paper towels may destroy the Slide matrix. DO NOT ALLOW THE SLIDES TO DRY DURING THE TEST PROCEDURE.
8. Add 20 µl of Conjugate to each well.
9. Repeat steps 4 through 7.
RESULTS

1. Before results can be accurately interpreted, tissue section histology should be fully understood. Antigen/antibody reactions other than the primary antibody (MA) initially sought, may occur within the tissue substrate being used. Tissue antigen-antibody site identification, incorporating appropriate positive and negative controls can often provide additional diagnostic information to the clinician. Antibodies to ANA and SMA can be detected using this substrate.

 a. Antinuclear Antibodies (ANA): In a positive assay the patient’s sera interacts with the nuclei of the epithelial cells lining the tubules producing an apple-green staining with the addition of the FITC conjugate.

 b. Smooth Muscle Antibodies (SMA): In a positive assay, the patient’s sera interacts with blood vessels usually present in the substrate producing an apple-green staining with the addition of FITC conjugate. A confirmatory test can be run using rat stomach substrate; the tissue of choice.

2. Negative: Titters less than 1:10 are considered negative.

3. Positive: A positive reaction is the presence of apple-green MA staining at a 1:10 dilution based on a 1+ to 4+ staining intensity. A 1+ is considered a weak reaction and 4+ a strong reaction. All sera positive at 1:10 should be titrated to endpoint dilution. This is accomplished by making a 1:20, 1:40, 1:80, etc., serial dilution of all positives. The endpoint titer is the highest dilution that procedures a positive apple-green staining reaction.

PERFORMANCE CHARACTERISTICS

The Diagnostic Automation, Inc. IFA AMA test system was tested in parallel with a reference procedure using rat kidney sections. Routine MA testing was performed by both procedures on 77 patient specimens. Of these 77 sera, 15 were positive by both procedures on 77 patient specimens. Of these sera, 15 were obtained from patients with a diagnosis of primary biliary cirrhosis, and two low titer positives were noted. MA serology was performed in parallel with a reference procedure using rat kidney sections. Routine MA testing was performed by both procedures on 77 patient specimens. Of these 77 sera, 15 were obtained from patients with a diagnosis of primary biliary cirrhosis, and two low titer positives were noted.

LIMITATIONS OF PROCEDURE

1. The DAI AMA test is a laboratory diagnostic aid, and by itself is not diagnostic. Positive MA may be found in diseases other than primary biliary cirrhosis. It is therefore imperative that MA results be interpreted in light of the patient’s clinical condition by a medical authority.

2. Some commonly prescribed drugs may induce MA.

3. Some patient’s sera may produce a prone zone at a 1:10 dilution. Serial dilution of these sera will eliminate these zones.

4. No definitive association between MA staining and any specific disease state is intended with this product.

EXPECTED VALUES

The expected value in the normal population is negative or less than 1:10. However, apparently healthy individuals may contain AMA in their sera.

STORAGE

Unopened Test System

- 2-8°C

Mounting Media, Conjugate, Sample Diluent, Slides, Positive and Negative Controls

- 2-8°C

Rehydrated PBS (Stable for 30 days)

- 2-25°C

Phosphate-buffered-saline (PBS) Packets

REFERENCES

