INTENDED USE
This kit is an enzyme-linked immunosorbent assay (ELISA) for qualitative detection of HBsAg in human serum or plasma. It is intended for screening of blood donors and for diagnosing of patients related to infection with hepatitis B virus.

SUMMARY
Hepatitis B virus (HBV) is an enveloped, double-stranded DNA virus belonging to the Hepadnaviridae family and is recognized as the major cause of blood transmitted hepatitis together with hepatitis C virus (HCV). Infection with HBV induces a spectrum of clinical manifestations ranging from mild, inapparent disease to fulminant hepatitis, severe chronic liver diseases, which in some cases can lead to cirrhosis and carcinoma of the liver. Classification of a hepatitis B infection requires the identification of several serological markers expressed during three phases (incubation, acute and convalescent) of the infection. Now several diagnostic test are used for screening, clinical diagnosis and management of the disease
Hepatitis B surface antigen or HBsAg, previously described as Australia antigen, is the most important protein of the envelope of Hepatitis B Virus. The surface antigen contains the determinant “a”, common to all known viral subtypes and immunologically distinguished in two distinct subgroups (ay and ad). HBV has 10 major serotypes and four HBsAg subtypes have been recognized (adw, ady, ayw, and ayr). HBsAg can be detected 2 to 4 weeks before the ALT levels become abnormal and 3 to 5 weeks before symptoms develop. The serological detection of HBsAg is a powerful method for the diagnosis and prevention of HBV infection and ELISA has become an extensively used analytical system for screening of blood donors and clinical diagnosis of HBV in infected individuals.
PRINCIPLE OF THE ASSAY

For detection of HBsAg, this kit uses antibody “sandwich” ELISA method in which, polystyrene microwell strips are pre-coated with monoclonal antibodies specific to HBsAg. Patient’s serum or plasma sample is added to the microwell together with a second antibody conjugated the enzyme horseradish peroxidase (the HRP-Conjugate) and directed against a different epitope of HBsAg. During incubation, the specific immunocomplex formed in case of presence of HBsAg in the sample, is captured on the solid phase. After washing to remove sample serum proteins and unbound HRP-conjugate, Chromogen solutions containing tetramethyl-benzidine (TMB) and urea peroxide are added to the wells. In presence of the antibody-antigen-antibody(HRP) “sandwich” immunocomplex, the colorless Chromogens are hydrolyzed by the bound HRP-conjugate to a blue-colored product. The blue color turns yellow after stopping the reaction with sulfuric acid. The amount of color intensity can be measured and it is proportional to the amount of antigen captured in the wells, and to its amount in the sample respectively. Wells containing samples negative for HBsAg remain colorless.

Assay principle scheme: Double antibody sandwich ELISA

\[
\text{Ab(p)} + \text{Ag(s)} + (\text{Ab})_{\text{ENZ}} \rightarrow [\text{Ab(p)}–\text{Ag(s)}–(\text{Ab})_{\text{ENZ}}] \rightarrow \text{blue} \rightarrow \text{yellow} \quad (\text{+}) \\
\text{Ab(p)} + (\text{Ab})_{\text{ENZ}} \rightarrow [\text{Ab(p)}] \rightarrow \text{no color} \quad (-)
\]

COMPONENTS

- **MICROWELL PLATE**

 Blank microwell strips fixed on white strip holder.
 The plate is sealed in aluminum pouch with desiccant.
 12×8-well strips per plate.
 Each well contains monoclonal antibodies reactive to HBsAg (anti-HBs).
 The microwell strips can be broken to be used separately.
 Place unused wells or strips in the plastic sealable storage bag together with the desiccant and return to 2~8°C.

- **NEGATIVE CONTROL**

 Yellowish liquid filled in a vial with green screw cap.
 1ml per vial.
 Protein-stabilized buffer tested non-reactive for HBsAg.
 Preservatives: 0.1% ProClin 300.
 Ready to use as supplied.
 Once open, stable for one month at 2-8°C.

- **POSITIVE CONTROL**

 Red-colored color liquid filled in a vial with red screw cap.
 1ml per vial.
 HBsAg diluted in protein-stabilized buffer.
 Preservatives: 0.1% ProClin 300.
 Ready to use as supplied.
 Once open, stable for one month at 2-8°C.
• **HRP-CONJUGATE REAGENT**
 Red-colored liquid filled in a white a vial with orange screw cap.
 7ml per vial
 Horseradish peroxidase-conjugated anti-HBs antibodies.
 Ready to use as supplied. Once open, stable
 for one month at 2-8°C.

• **WASH BUFFER**
 Colorless liquid filled in a clear bottle with white screw cap.
 30ml per bottle.
 PH 7.4, 20 × PBS (Contains Tween-20 as a detergent).
 DILUTE BEFORE USE -The concentration must be
 diluted 1 to 20 with distilled/deionized water before use.
 Once diluted, stable for one week at room temperature
 or for two weeks at 2-8°C.

• **CHROMOGEN SOLUTION A**
 Colorless liquid filled in a white vial with green screw cap.
 8ml per vial.
 Urea peroxide solution.
 Ready to use as supplied.
 Once open, stable for one month at 2-8°C.

• **CHROMOGEN SOLUTION B**
 Colorless liquid filled in a Brown vial with Brown screw cap.
 8ml per vial.
 TMB solution(Tetramethyl-benzidine dissolved in citric acid).
 Ready to use as supplied.
 Once open, stable for one month at 2-8°C.

• **STOP SOLUTION**
 Colorless liquid filled in a white vial with yellow screw cap.
 8ml per vial.
 Diluted sulfuric acid solution (2.0M H$_2$SO$_4$).

• **PLASTIC SEALABLE BAG**
 For enclosing the strips not in use.

• **CARDBOARD PLATE COVER**
 To cover the plates during incubation and prevent
 evaporation or contamination of the wells.

• **PACKAGE INSERTS**
 For use as supplied.

ADDITIONAL MATERIALS AND INSTRUMENTS REQUIRED BUT NOT PROVIDED
- Freshly distilled or deionized water.
- Disposable gloves and timer.
- Appropriate waste containers for potentially contaminated materials.
- Disposable V-shaped troughs.
- Dispensing system and/or pipette (single or multichannel), disposable pipette tips
- Absorbent tissue or clean towel.
- Dry incubator or water bath, 37±0.5°C.
- Microshaker for dissolving and mixing conjugate with samples.
- Microwell plate reader, single wavelength 450nm or dual wavelength 450nm and 630nm.
- Microwell aspiration/wash system.
SPECIMEN COLLECTION, TRANSPORTATION AND STORAGE

1. **Sample Collection:** Either fresh serum or plasma samples can be used for this assay. Blood collected by venipuncture should be allowed to clot naturally and completely – the serum/plasma must be separated from the clot as early as possible as to avoid hemolysis of the RBC. Care should be taken to ensure that the serum samples are clear and not contaminated by microorganisms. Any visible particulate matters in the sample should be removed by centrifugation at 3000 RPM for at least 20 minutes at room temperature, or by filtration on 0.22u filters. Plasma samples collected into EDTA, sodium citrate or heparin may be tested, but highly lipaemic, icteric, or hemolized samples should not be used as they could give erroneous results in the assay. Do not heat inactivate samples. This can cause deterioration of the target proteins in sample.

2. **Transportation and Storage:** Store samples at 2-8°C. Samples not required for assaying within 3 days should be stored frozen (-20°C or lower). Multiple freeze-thaw cycles should be avoided. For shipment, samples should be packaged and labeled in accordance with the existing local and international regulations for transport of clinical samples and ethological agents.

SPECIAL INSTRUCTIONS FOR WASHING

1. A good washing procedure is essential to obtain correct and precise analytical data.
2. It is therefore recommended to use a good quality ELISA microplate washer, maintained at the best level of washing performances. In general, no less than 5 automatic washing cycles with dispensing of 350-400µl/well, are sufficient to avoid false positive reactions and high background (all wells turn yellow).
3. To avoid cross-contaminations of the plate with sample or HRP-conjugate, after incubation do not discard the content of the wells, but allow the plate washer to aspirate it automatically.
4. It is recommended that the washing system should be calibrated on the kit itself in order to match the declared analytical performances. Assure that the microplate washer’s liquid dispensing channels are not blocked or contaminated, and sufficient volume of Wash buffer is dispensed each time into the wells.
5. In case of manual washing, we suggest to perform at least 5 cycles, dispensing 350-400µl/well and aspirating the liquid for 5 times. If poor results (high background) are observed, increase the washing cycles or soaking time per well.
6. In any case, the liquid aspirated out the strips should be treated with a sodium hypochlorite solution (final concentration of 2.5%) for 24 hours, before liquids are disposed in an appropriate way.
7. The concentrated Washing buffer should be diluted **1 to 20** before use. For one plate, mix 30 ml of the concentrate with 570 ml of water for a final volume of 600 ml diluted Wash Buffer. If less than a whole plate is used, prepare the proportional volume of solution.

STORAGE AND STABILITY

The components of the kit will remain stable through the expiration date indicated on the label and package when stored between 2-8 °C, **do not freeze**. To assure maximum performance of this HBsAg ELISA kit, during storage protect the reagents from contamination with microorganism or chemicals.

PRECAUTIONS AND SAFETY

This kit is intended **FOR IN VITRO USE ONLY** [IVD]

FOR PROFESSIONAL USE ONLY

The ELISA assay is a time and temperature sensitive method. To avoid incorrect result, strictly follow the test procedure steps and do not modify them.
1. Do not exchange reagents from different lots, or use reagents from other commercially available kits. The components of the kit are precisely matched as to achieve optimal performance during testing.
2. Make sure that all reagents are within the validity indicated on the kit box and are of the same lot. Never use reagents beyond the expiry date stated on reagents labels or on the kit box.
3. **CAUTION - CRITICAL STEP:** Allow the reagents and samples to stabilize at room temperature (18-30°C) before use. Shake reagent gently before, and return to 2-8°C immediately after use.
4. Use only sufficient volume of sample as indicated in the procedure steps. Failure to do so, may cause in low sensitivity of the assay.
5. Do not touch the bottom exterior of the wells; fingerprints or scratches may interfere with microwell reading.
6. When reading the results, ensure that the plate bottom is dry and there are no air-bubbles inside the wells.
7. Never allow the microplate wells to dry after the washing step. Immediately proceed to the next step. Avoid the formation of air-bubbles when adding the reagents.
8. Avoid assay steps long time interruptions. Assure same working conditions for all wells.
9. Calibrate the pipette frequently to assure the accuracy of samples/reagents dispensing. Always use different disposal pipette tips for each specimen and reagents as to avoid cross-contaminations. Never pipette solutions by mouth.
10. The use of automatic pipettes is recommended.
11. Assure that the incubation temperature is 37°C inside the incubator.
12. When adding samples, avoid touching the well’s bottom with the pipette tip.
13. When reading the results with a plate reader, it is recommended to determine the absorbance at 450nm or at 450nm with reference at 630nm.
14. All specimens from human origin should be considered as potentially infectious.
15. Materials from human origin may have been used in the kit. These materials have been tested with tests kits with accepted performance and found negative for antibodies to HIV ½, HCV, TP and HBsAg. However, there is no analytical method that can assure that infectious agents in the specimens or reagents are completely absent. Therefore, handle reagents and specimens with extreme caution as if capable of transmitting infectious diseases. Strict adherence to GLP (Good Laboratory Practice) regulations can ensure the personal safety. Never eat, drink, smoke, or apply cosmetics in the assay laboratory.
16. Bovine derived sera may have been used in this kit. Bovine serum albumin (BSA) and fetal calf sera (FCS) are derived from animals from BSE/TSE free-geographical areas.
17. The pipette tips, vials, strips and sample containers should be collected and autoclaved for 1 hour at 121°C or treated with 10% sodium hypochlorite for 30 minutes to decontaminate before any further steps for disposal.
18. The Stop solution (2M H₂SO₄) is a strong acid. Corrosive. Use it with appropriate care. Wipe up spills immediately or wash with water if come into contact with the skin or eyes. ProClin 300 used as a preservative can cause sensation of the skin.
19. The enzymatic activity of the HRP-conjugate might be affected from dust, reactive chemical, and substances like sodium hypochlorite, acids, alkalins etc. Do not perform the assay in the presence of such substances.
20. Materials Safety Data Sheet (MSDS) available upon request.
21. If using fully automated microplate processing system, during incubation, do not cover the plates with the plate cover. The tapping out of the remainders inside the plate after washing, can also be omitted.

ASSAY PROCEDURE

Step1 Reagents preparation: Allow the reagents and samples to reach room temperature (18-30°C) for at least 15-30 minutes. Check the Wash buffer concentrate for the presence of salt crystals. If crystals have formed in the solution, resolubilize by warming at 37°C until crystals dissolve.
Dilute the stock Wash Buffer 1 to 20 with distilled or deionized water. Use only clean vessels to dilute the buffer.

Step 2 Numbering Wells: Set the strips needed in strip-holder, and number sufficient number of wells including three for the Negative control (e.g. B1, C1, D1), two for the Positive control (e.g. E1, F1) and one Blank (e.g. A1, neither samples nor HRP-Conjugate should be added into the Blank well). If the results will be determined by using dual wavelength plate reader, the requirement for use of Blank well could be omitted. Use only number of strips required for the test.

Step 3 Adding Sample and HRP-Conjugate: Add 50µl of Positive control, Negative control, and specimen into their respective wells. Note: Use a separate disposal pipette tip for each specimen, Negative and Positive Control as to avoid cross-contamination. Add 50µl HRP-Conjugate to each well except the Blank, and mix by tapping the plate gently.

Step 4 Incubating: Cover the plate with the plate cover and incubate for 60 minutes at 37°C. It is recommended to use thermostat-controlled water tank to assure the temperature stability and humidity during the incubation. If dry incubator is used, do not open the door frequently.

Step 5 Washing: At the end of the incubation, remove and discard the plate cover. Wash each well 5times with diluted Wash buffer. Each time, allow the microwells to soak for 30-60 seconds. After the final washing cycle, turn the plate down onto blotting paper or clean towel, and tap it to remove any remainders.

Step 6 Coloring: Dispense 50µl of Chromogen A and 50µl Chromogen B solution into each well including the Blank, and mix by tapping the plate gently. Incubate the plate at 37°C for 15 minutes avoiding light. The enzymatic reaction between the Chromogen solutions and the HRP-Conjugate produces blue color in Positive control and HBsAg positive sample wells.

Step 7 Stopping Reaction: Using a multichannel pipette or manually, add 50µl Stop Solution into each well and mix gently. Intensive yellow color develops in Positive control and HBsAg positive sample wells.

Step 8 Measuring the Absorbance: Calibrate the plate reader with the Blank well and read the absorbance at 450nm. If a dual filter instrument is used, set the reference wavelength at 630nm. Calculate the Cut-off value and evaluate the results (Note: read the absorbance within 5 minutes after stopping the reaction).

INTERPRETATION OF RESULTS AND QUALITY CONTROL

Each microplate should be considered separately when calculating and interpreting results of the assay, regardless of the number of plates concurrently processed. The results are calculated by relating each sample’s optical density (OD) value to the Cut-off value (C.O.) of the plate. If the Cut-off reading is based on single filter plate reader, the results should be calculated by subtracting the Blank well OD value from the print report values of samples and controls. In case the reading is based on dual filter plate reader, do not subtract the Blank well OD from the print report values of samples and controls.

1. **Calculation of Cut-off value:**
 \[\text{Cut-off value (C.O.)} = *N_c \times 2.1 \]

 \(*N_c = \text{the mean absorbance value for three negative controls.}\

 \textbf{Important:} If the mean OD value of the negative control is lower than 0.05, take it as 0.05. If higher than 0.05 see the Quality control range.

Example:

1. Calculation of Nc:
 Well No B1 C1 D1
 Negative controls OD value
 \(N_c = 0.016\) (the Nc value is lower than 0.05 so take it as 0.05)
2. Calculation of Cut-off value: Cut-off (C.O) = 0.05 x 2.1 = 0.105
If one of the Negative control values does not meet the Quality control range specifications, it should be discarded and the mean value is calculated again using the remaining two values. If more than one negative control OD value does not meet the Quality control range specifications, the test is invalid and must be repeated.

2. Quality control range:
The test results are valid if the Quality Control criteria are verified. It is recommended that each laboratory must establish appropriate quality control system with quality control material similar to or identical with the patient sample being analyzed
 1. The OD value of the Blank well, which contains only Chromogens and Stop solution, is less than 0.080 at 450 nm.
 2. The OD value of the Positive control must be equal to or greater than 0.800 at 450/630nm, or at 450nm after blanking.
 3. The OD value of the Negative control must be less than 0.100 at 450/630nm or at 450nm after blanking.

3. Interpretations of the results:
(S = the individual optical density (OD) of each specimen)
Negative Results (S/C.O. <1): samples giving an optical density less than the Cut-off value are considered negative, which indicates that no hepatitis B virus surface antigen has been detected with this HBsAg ELISA, therefore the patient is probably not infected with hepatitis B virus.
Positive Results (S/C.O.≥1): samples giving an optical density greater than or equal to the Cut-off value are considered initially reactive, which indicates that HBV surfaces antigen has probably been detected with this HBsAg ELISA. Any initially reactive samples should be retested in duplicates. Repeatedly reactive samples could be considered positive for HBsAg, therefore the patient is probably infected with HBV and the blood unit should not be transfused.
Borderline: Samples with absorbance to Cut-off ratio between 0.9 and 1.00 are considered borderline samples and retesting is recommended. Repeatedly positive samples can be considered positive for HBsAg.

TEST PERFORMANCE AND EXPECTED RESULTS

Clinical Specificity: The clinical specificity of this assay was determinate by a panel of samples obtained from 2500 healthy blood donors and 300 undiagnosed hospitalized patients. The repeatedly reactive samples and samples confirmed positive with the reference test were not included in the calculation of specificity.

<table>
<thead>
<tr>
<th>Sample</th>
<th>-</th>
<th>+</th>
<th>Confirmed positive</th>
<th>Specificity</th>
<th>False positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>donors</td>
<td>2500</td>
<td>2447</td>
<td>56</td>
<td>53</td>
<td>99.87%</td>
</tr>
<tr>
<td>patients</td>
<td>300</td>
<td>274</td>
<td>27</td>
<td>26</td>
<td>99.63%</td>
</tr>
</tbody>
</table>

Clinical Sensitivity: The clinical sensitivity of this HBsAg ELISA was calculated by a panel of samples obtained from 670 hepatitis B patients with well-characterized clinical history based upon reference assays for detection of HBsAg, HBeAg, anti-HBs, anti-HBe, and anti-HBc. Licensed HBsAg ELISA test was used as a confirmatory assay. The evaluation results are given below. Results obtained in individual laboratories may differ.

<table>
<thead>
<tr>
<th>Sample</th>
<th>-</th>
<th>+</th>
<th>Confirmed positive</th>
<th>Sensitivity</th>
<th>False Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>200</td>
<td>0</td>
<td>200</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Chronic</td>
<td>400</td>
<td>0</td>
<td>399</td>
<td>99.75%</td>
<td>1</td>
</tr>
<tr>
<td>Recovery</td>
<td>70</td>
<td>65</td>
<td>5</td>
<td>100%</td>
<td>0</td>
</tr>
</tbody>
</table>
Analytical Specificity:
1. No cross reactivity observed with samples from patients infected with HAV, HCV, HIV, CMV, and TP.
2. No interference from rheumatoid factors up to 2000U/ml observed.
3. No high dose hook effect up to HBsAg concentrations of 200000ng/ml observed during clinical testing.
4. Frozen specimens have been tested too to check for interferences due to collection and storage.

Analytical Endpoint Sensitivity (lower detection limit): The assay shows sensitivity at the Cut-off of 0.5 ng/ml (adr) and 0.5 ng/ml (adw, ay).

<table>
<thead>
<tr>
<th>Reproducibility:</th>
<th>Within Run</th>
<th>Between Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen Type</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>5ng/ml HBsAg</td>
<td>10</td>
<td>Mean OD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CV%</td>
</tr>
<tr>
<td>Weak positive</td>
<td>10</td>
<td>0.457</td>
</tr>
<tr>
<td>Moderate positive</td>
<td>10</td>
<td>1.572</td>
</tr>
<tr>
<td>Strong positive</td>
<td>10</td>
<td>2.327</td>
</tr>
<tr>
<td>Positive control</td>
<td>10</td>
<td>2.322</td>
</tr>
</tbody>
</table>

LIMITATIONS
1. Non-repeatable positive result may occur due to the general biological and biochemical characteristics of ELISA assays. The test is designed to achieve very high performance characteristics of sensitivity and specificity. However, in very rare cases some HBV mutants or subtypes can remain undetectable. Antigens may be undetectable during the early stages of the disease and in some immunosuppressed individuals.
2. If, after retesting of the initially reactive samples, the assay results are negative, these samples should be considered as non-repeatable (false positive) and interpreted as negative. As with many very sensitive ELISA assays, false positive results can occur due to several reasons, most of which are related but not limited to inadequate washing step.
3. Any positive results must be interpreted in conjunction with patient clinical information and other laboratory testing results.
4. Common sources for mistakes: kits beyond the expiry date, bad washing procedures, contaminated reagents, incorrect assay procedure steps, insufficient aspiration during washing, failure to add samples or reagents, equipment, timing, volumes, sample nature and quality.
5. The prevalence of the marker will affect the assay’s predictive values.
6. This kit is intended ONLY for testing of individual serum or plasma samples. Do not use it for testing of cadaver samples, saliva, urine or other body fluids, or pooled (mixed) blood.
7. This is a qualitative assay and the results cannot be used to measure antigens concentrations.

INDICATIONS OF INSTABILITY OR DETERIORATION OF THE REAGENTS
1. Values of the Positive or Negative controls, which are out of the indicated Quality control range, are indicator of possible deterioration of the reagents and/or operator or equipment errors. In such case, the results should be considered as invalid and the samples must be retested. In case of constant erroneous results classified as due to deterioration or instability of the reagents, immediately substitute the reagents with new ones.
2. If after mixing of the Chromogen A and B solutions into the wells, the, the color of the mixture turns blue within few minutes, do not continue carrying out the testing and replace the reagents with fresh ones.
VALIDITY
Please do not use this kit beyond the expiry date indicated on the kit box and reagent labels.

REFERENCES

SUMMARY OF THE ASSAY PROCEDURE:

<table>
<thead>
<tr>
<th>Step</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Sample</td>
<td>50µl</td>
</tr>
<tr>
<td>Add HRP-Conjugate</td>
<td>50µl</td>
</tr>
<tr>
<td>Incubate</td>
<td>60minutes</td>
</tr>
<tr>
<td>Wash</td>
<td>5times</td>
</tr>
<tr>
<td>Coloring</td>
<td>50l A + 50µl B</td>
</tr>
<tr>
<td>Incubate</td>
<td>15minutes</td>
</tr>
<tr>
<td>Stop the reaction</td>
<td>50µl stop solution</td>
</tr>
<tr>
<td>Stop the absorbance</td>
<td>450nm or 450/630nm</td>
</tr>
</tbody>
</table>

SUMMARY OR THE MAJOR COMPONENTS OF THE KIT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwell plate</td>
<td>One/96 wells</td>
</tr>
<tr>
<td>Negative/Positive control</td>
<td>One each/ 1ml</td>
</tr>
<tr>
<td>HRP-Conjugate</td>
<td>One/ 7ml</td>
</tr>
<tr>
<td>Wash Buffer</td>
<td>One/ 30ml</td>
</tr>
<tr>
<td>Chromogen A/B Stop Solution</td>
<td>One each/ 8ml</td>
</tr>
</tbody>
</table>

Note: the components of individual kits are not interchangeable.
Example of controls/samples dispensing scheme

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
<th>…</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Adopted</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-01-05</td>
<td>DA-HBsAg-2008</td>
</tr>
</tbody>
</table>

DIAGNOSTIC AUTOMATION, INC.
23961 Craftsman Road, Suite D/E/F, Calabasas, CA 91302
Tel: (818) 591-3030 Fax: (818) 591-8383
ISO 13485-2003

Revision Date: 4/23/09