AccuDiag™
Herpes Simplex 1, 2 IgM
(HSV 1, 2 IgM)
ELISA

INTENDED USE

The Diagnostic Automation, Inc. ELISA Herpes Simplex Virus (HSV) 1 & 2 IgM Test System is an enzyme-linked immunosorbent assay for the qualitative detection of IgM class antibodies to Herpes Simplex Virus (HSV) in human serum. This test is intended to be used to evaluate serologic evidence of primary or reactivated infection with HSV and is for In Vitro diagnostic use.

SUMMARY AND EXPLANATION

HSV infections are classified as either first time or recurrent. Following a first time infection, a latent infection is established in sensory neurons and recurrent infection results from reactivation of the latent infection (2). Recurrent infections tend to be less severe and of shorter duration than the first time infection (1). HSV infections are usually localized to the initial site of infection. However, serious localized or disseminated disease may occur in persons who are immunologically impaired. Such persons include newborn infants, and patients on immunosuppressive therapy such as transplant recipients and cancer patients (1, 2).

HSV infections are transmitted by virus containing secretions through close personal contact. HSV infections, both primary and recurrent are often subclinical and asymptomatic. Shedding of the virus is the most important factor contributing to the spread of the virus (2). From 75 - 90% of persons of lower socioeconomic status acquire HSV antibodies by the end of the first decade of life (5, 7). In persons of higher socioeconomic status, 30 - 40% become seropositive by the middle of the second decade (5).

Primary HSV-1 infections of the oral mucosa usually occur in children of less than 5 years of age (2). Most infections are asymptomatic. Symptomatic infections are characterized by gingivostomatitis associated with fever, malaise and tender swollen cervical lymph nodes (2). Numerous small vesicles develop on the oral mucosa, become ulcerated and heal within about two weeks. The most common form of recurrent HSV-1 is herpetic labialis in which vesicles appear on the lips, nostrils or skin around the mouth (1, 2). Symptoms of genital HSV infections are multiple ulcerative lesions accompanied by pain, fever, dysuria and lymphadenopathy (6).

The most severe complication of genital HSV infection is neonatal disease (2). Unlike cytomegalovirus, HSV rarely crosses the placenta to infect the fetus in utero (1). HSV is transmitted from the mother to the neonate at the time of delivery (1). Infants acquire the infection by passage through an infected birth canal or if membranes have been ruptured for more than six hours (6). Of mothers with an active primary infection, the risk of transmission to infants is as high as 40% (5). About 69 - 80% of infants who develop neonatal herpes are born to women who are asymptomatic of genital HSV infection at the time of birth (5).

Infants infected with HSV appear normal at birth but almost invariably develop symptoms during the newborn period (1, 5). Neonatal HSV infection may remain localized or become disseminated (1, 5). Localized infection may involve one or a combination of sites. These are skin, eyes, mouth or central nervous system. Disseminated infection is manifested by pneumonia, hepatitis, disseminated intravascular coagulopathy and encephalitis (1, 5). Of the infants with neonatal HSV, about one half will die if not treated, and about one half of the surviving infants will develop severe neurological or ocular sequelae (3).

Serological procedures may be useful for diagnosis of primary HSV infections, and for determining evidence of past infection with HSV. Diagnosis of primary infection is based on demonstration of seroconversion or a significant rise in titer between paired acute and convalescent sera (2, 4). Serological procedures are less useful for diagnosis of recurrent HSV infection since recurrent infections are often not reflected by a change in antibody levels (2, 4). Also, among persons with a first time HSV-2 infection who experienced a previous childhood HSV-1 infection, little or no increase in HSV-2 type specific antibodies may be produced (2, 4).

A number of serologic procedures have been developed to detect antibodies to HSV. These include complement fixation, indirect immunofluorescent antibody, plaque neutralization, and ELISA (enzyme linked immunosorbent assay) (2, 4, and 6). The ELISA procedure was first described by Engvall and Perlman, and has subsequently been applied to the detection of a wide variety of different antigens and antibodies (10 - 12). When compared to other serologic tests, ELISA may be a very specific, sensitive and reliable method for detection of antibodies to HSV (6, 13, and 14). The ELISA procedure allows an objective determination of antibody status to be made on a single dilution of the test specimen and is suitable for screening large numbers of patient samples.

High affinity IgG antibodies to HSV, if present in a sample, may interfere with the detection of IgM specific antibody (15, 20). High affinity IgG antibody may preferentially bind to HSV antigen leading to false negative IgM results (15). Also, rheumatoid factor, if present along with antigen specific IgG may bind to the IgG causing false positive IgM results (16). Both of the above problems can be eliminated by removing IgG from the sample before testing for IgM (17 - 20). Several different methods of separating IgG have been used. These include gel filtration (17), absorption with protein A (18), ion exchange chromatography (19), and precipitation of IgG with anti-human IgG serum (20).

TEST PRINCIPLE

The Diagnostic Automation HSV-1,2 IgM ELISA test system is designed to detect IgM class antibodies to Herpes Simplex Virus in human sera. Wells of polystyrene microwell strips are sensitized by passive absorption with HSV antigen. The test procedure involves three incubation steps:

1. Test sera are diluted with the Sample Diluent provided. The Sample Diluent contains antihuman IgG that precipitates and removes IgG and rheumatoid factor from the sample leaving IgM free to react with the immobilized antigen. During
sample incubation any antigen specific IgM antibody in the sample will bind to the immobilized antigen. The plate is washed to remove unbound antibody and other serum components.

2. Peroxidase Conjugated goat anti-human IgM is added to the wells and the plate is incubated. The Conjugate will react with IgM antibody immobilized on the solid phase in step 1. The wells are washed to remove unbound Conjugate.

3. The microwells containing immobilized peroxidase Conjugate are incubated with peroxidase Substrate Solution. Hydrolysis of the Substrate by peroxidase produces a color change. After a period of time the reaction is stopped and the color intensity of the solution is measured photometrically. The color intensity of the solution depends upon the antibody concentration in the original test sample.

SPECIMEN COLLECTION AND PREPARATION

1. It is recommended that specimen collection be carried out in accordance with NCCLS document M29: Protection of Laboratory Workers from Infectious Disease.
2. No known test method can offer complete assurance that human blood samples will not transmit infection. Therefore, all blood derivatives should be considered potentially infectious.
3. Use only freshly drawn and properly refrigerated sera obtained by approved aseptic venipuncture procedures in this assay (20, 21). Do not use if there are any added anticoagulants or preservatives. Avoid using hemolized, lipemic, or bacterially contaminated sera.
4. Store sample at room temperature for no longer than 8 hours. If testing is not performed within 8 hours, sera may be stored between 2° and 8°C for no longer than 48 hours. If delay in testing is anticipated, store test sera at –20°C or lower. Avoid multiple freeze/thaw cycles that may cause loss of antibody activity and give erroneous results. It is the responsibility of the individual laboratory to use all available references and/ or its own studies to determine stability criteria for its laboratory (24).

MATERIALS AND COMPONENTS

Materials provided with the test kits

Each kit contains the following test components in sufficient quantities to perform the number of tests indicated on the packaging label. **Note:** The following components contain Sodium Azide as a preservative at a concentration of < 0.1% (w/v):

- **Controls, Calibrators and Sample Diluent.**
 1. **Plate** 96 wells configured in twelve, 1x8-well, strips coated with inactivated HSV-1 (MacIntyre strain) and HSV-2 (strain G produced in E6 – 20% in purity) antigens. The strips are packaged in a strip holder and sealed in an envelope with desiccant.
 2. **Conjugate** Conjugated (horseradish peroxidase) goat anti-human IgM (μ chain specific). One, 15mL white-capped bottle. Ready to use.
 3. **Positive Control** (Human Serum). One, 0.35 mL vial with a red cap.
 4. **Calibrator** (Human Serum). One, 0.35 mL vial with a blue cap.
 5. **Negative Control** (Human Serum). One, 0.35 mL vial with a green cap.
 6. **Sample Diluent**. One 30 mL bottle (blue cap) bottle containing Tween-20, bovine serum albumin and phosphate-buffered-saline. Purple solution. Ready to use.
 7. **TMB**: One 15 mL amber bottle containing 3,3′,5,5′-tetramethylbenzidine (TMB). Ready to use.
 8. **Stop solution**: One 15 mL bottle (red cap) containing 1M H₂SO₄, 0.7M HCl. Ready to use.
 9. **Wash buffer concentrate (10X)**: dilute 1 part concentrate + 9 parts deionized or distilled water. One 100 mL bottle (clear cap) containing a 10X concentrated phosphate-buffered-saline and Tween-20 solution (blue solution). **NOTE:** 1X solution will have a pH of 7.2 ± 0.2.

Note: Kit also contains:

- Component list containing lot specific information is inside the kit box.

2. Package insert providing instructions for use.

Materials required but not provided

- **ELISA microwell reader capable of reading at a wavelength of 450nm.**
- **Pipettes capable of accurately delivering 10 to 200μL.**
- **Multichannel pipette capable of accurately delivering (50-200μL).**
- **Reagent reservoirs for multichannel pipettes.**
- **Wash bottle or microwell washing system.**
- **Distilled or deionized water.**
- **One liter graduated cylinder.**
- **Serological pipettes.**
- **Disposable pipette tips.**
- **Paper towels.**
- **Laboratory timer to monitor incubation steps.**
- **Disposal basin and disinfectant. (example: 10% household bleach, 0.5% sodium hypochlorite.)**

PRECAUTIONS

1. For In Vitro Diagnostic Use.
2. Follow normal precautions exercised in handling laboratory reagents. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.
3. The wells of the ELISA plate do not contain viable organisms. However, consider the strips potentially biohazardous materials and handle accordingly.
4. The Controls are potentially biohazardous materials. Source materials from which these products were derived were found negative for HIV-1 antigen, HBsAg and for antibodies against HCV and HIV by approved test methods. However, since no test method can offer complete assurance that infectious agents are absent, handle these products at the Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual “Biosafety in Microbiological and Biomedical Laboratories”: Current Edition; and OSHA’s Standard for Bloodborne Pathogens (23).
5. Adherence to the specified time and temperature of incubations is essential for accurate results. Store sample at room temperature for no longer than 8 hours before starting the assay. Return unused reagents to refrigerated temperature immediately after use.
6. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual wash solution; (e.g., by blotting or aspiration) before adding Conjugate or Substrate. Do not allow the wells to dry out between incubations.
7. The Sample Diluent, Controls, and Calibrator contain Sodium Azide at a concentration of <0.1% (w/v). Sodium Azide has been reported to form lead or copper azides in laboratory plumbing which may cause explosions upon hammering. To prevent, rinse sink thoroughly with water after disposing of solution containing Sodium Azide.
8. The Stop Solution is TOXIC if inhaled, has contact with skin or if swallowed. It can cause burns. In case of accident or ill feelings, seek medical advice immediately.
9. The TMB Solution is HARMFUL. It is irritating to eyes, respiratory system and skin.
10. The Wash Buffer concentrate is an IRRITANT. It is irritating to eyes, respiratory system and skin.
11. Wipe the bottom of the plate free of residual liquid and/or fingerprints that can alter optical density (OD) readings.
12. Dilution or adulteration of these reagents may generate erroneous results.
13. Do not use reagents from other sources or manufacturers.
14. TMB Solution should be colorless, very pale yellow, very pale green, or very pale blue when used. Contamination of the TMB with Conjugate or other oxidants will cause the solution to change color prematurely. Do not use the TMB if it is noticeably blue in color.
15. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin and mucous membranes.
16. Avoid microbial contamination of reagents. Incorrect results may occur.
17. Cross contamination of reagents and/or samples could cause erroneous results.
18. Reusable glassware must be washed and thoroughly rinsed free of all detergents.
19. Avoid splashing or generation of aerosols.
20. Do not expose reagents to strong light during storage or incubation.
21. Allowing the microwell strips and holder to equilibrate to room temperature prior to opening the protective envelope will protect the wells from condensation.
22. Collect the wash solution in a disposable basin. Treat the waste solution with disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite). Avoid exposure of reagents to bleach fumes.
23. Caution: Neutralize any liquid waste at an acidic pH before adding to a bleach solution.
24. Do not use ELISA plate if the indicator strip on the desiccant pouch has turned blue to pink.
25. Do not allow the Conjugate to come in contact with containers or instruments that may have previously contained a solution utilizing Sodium Azide as a preservative. Residual amounts of Sodium Azide may destroy the Conjugate’s enzymatic activity.
26. Do not expose any of the reactive reagents to bleach-containing solutions or to any strong odors from bleach-containing solutions. Trace amounts of bleach (sodium hypochlorite) may destroy the biological activity of many of the reactive reagents within this Test System.

ASSAY PROCEDURE

1. Remove the individual components from storage and allow them to warm to room temperature (20-25°C).
2. Determine the number of microwells needed. Allow six Control/Calibrator determinations (one Blank, one Negative Control, three Calibrators and one Positive Control) per run. A Reagent Blank should be run on each assay. Check software and reader requirements for the correct Controls/ Calibrator configurations. Return unused strips to the resealable pouch with desiccant, seal, and return to storage between 2°- 8°C.

<table>
<thead>
<tr>
<th>EXAMPLE PLATE SET-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>

3. Prepare a 1:21 dilution (ex.: 10µL of serum + 200µL of Sample Diluent) of the Negative Control, Calibrator, Positive Control, and each patient serum.
4. To individual wells, add 100µL of each diluted control, calibrator and sample. Ensure that the samples are properly mixed. Use a different pipette tip for each sample.
5. Add 100µL of Sample Diluent to well A1 as a reagent blank. Check software and reader requirements for the correct reagent blank well configuration.
6. Incubate the plate at room temperature (20-25°C) for 25 ± 5 minutes.
7. Wash the microwell strips 5X.

A. Manual Wash Procedure:
 a. Vigorously shake out the liquid from the wells.
 b. Fill each microwell with Wash Buffer. Make sure no air bubbles are trapped in the wells.
 c. Repeat steps a. and b. for a total of 5 washes.
 d. Shake out the wash solution from all the wells. Invert the plate over a paper towel and tap firmly to remove any residual wash solution from the wells. Visually inspect the plate to ensure that no residual wash solution remains. Collect wash solution in a disposable basin and treat with 0.5% sodium hypochlorite (bleach) at the end of the days run.

B. Automated Wash Procedure:
If using an automated microwell wash system, set the dispensing volume to 300-350µL/well. Set the wash cycle for 5 washes with no delay between washes. If necessary, the microwell plate may be removed from the washer, inverted over a paper towel and tapped firmly to remove any residual wash solution from the microwells.

8. Add 100µL of the Conjugate to each well, including reagent blank well, at the same rate and in the same order as the specimens.
9. Incubate the plate at room temperature (20-25°C) for 25 ± 5 minutes.
10. Wash the microwells by following the procedure as described in step 7.
11. Add 100µL of TMB to each well, including reagent blank well, at the same rate and in the same order as the specimens.
12. Incubate the plate at room temperature (20-25°C) for 10 to 15 minutes.
13. Stop the reaction by adding 50µL of Stop Solution to each well, including reagent blank well, at the same rate and in the same order as the TMB was added. Positive samples will turn from blue to yellow. After adding the Stop Solution, tap the plate several times to ensure that the samples are thoroughly mixed.
14. Set the microwell reader to read at a wavelength of 450nm and measure the optical density (OD) of each well against the reagent blank. The plate should be read within 30 minutes after the addition of the Stop Solution.

RESULTS

A. Calculations:

1. **Correction Factor**
The manufacturer determined a Cutoff OD Value for positive samples and correlated it to the Calibrator. The Correction Factor (CF) allows for the determination of the Cutoff Value for positive samples. It will also correct for slight day-to-day variations in test results. The Correction Factor is determined for each lot of components and is printed on the Component Label located in the Test System box.

 \[\text{CF} = \frac{\text{mean OD of Calibrator}}{\text{mean OD of Negative Control}} \]

2. **Cutoff OD Value**

 To obtain the cutoff OD value, multiply the CF by the mean OD of the Calibrator determined above.

 \[\text{Cutoff OD} = \text{CF} \times \text{mean OD of Calibrator} \]

3. **Index Values or OD Ratios**

 Calculate the Index Value or OD Ratio for each specimen by dividing its OD value by the cutoff OD from step 2.

 \[\text{Index Value or OD Ratio} = \frac{\text{OD Value of Specimen}}{\text{Cutoff OD}} \]

 Example:

<table>
<thead>
<tr>
<th>Mean OD of Calibrator</th>
<th>Correction Factor (CF)</th>
<th>Cut off OD</th>
<th>Specimen Index Value or OD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.793</td>
<td>0.25</td>
<td>0.793 x 0.25 = 0.198</td>
<td>0.432 / 0.198 = 2.18</td>
</tr>
</tbody>
</table>

B. Interpretations:

 Index Values or OD ratios are interpreted as follows:

<table>
<thead>
<tr>
<th>Index Value or OD Ratio</th>
</tr>
</thead>
</table>

DAI CODE #2
PERFORMANCE CHARACTERISTICS

A. Comparative Study

Comparative studies were performed to demonstrate the equivalence of the Diagnostic Automation, Inc. ELISA HSV-1 & 2 IgM Test System to the combined results of two other ELISA test systems (HSV-1 and HSV-2) currently in commercial distribution. The performance of the DAI ELISA HSV-1 & HSV-2 IgM Test System was evaluated in a two-site clinical investigation. Briefly, there were a total of 219 specimens tested; 100 at Site One, and 119 at Site Two. Specimens tested from Site Three included 55 at Site One, and 119 at Site Two. Specimens tested from Site One included as two additional precision members. Each site included 20 control, 20 normal, and 20 clinical samples. No attempt to correlate the assay’s results with disease presence or absence. No judgement can be made on the assay’s accuracy to predict disease.

1. An OD ratio ≤ 0.90 indicates no detectable IgM antibody to HSV-1 or HSV-2. A negative result indicates no current or reactivated infection with HSV-1 or HSV-2.
2. An OD ratio >1.10 indicates that IgM antibodies specific to HSV-1 or HSV-2 were detected. It is not possible to distinguish between HSV-1 and HSV-2 with this Test System. Positive values indicate a primary or reactivated infection with HSV-1 or HSV-2.
3. Specimens with OD ratio values in the equivocal range (0.91 - 1.09) should be retested in duplicate. Report any two of the three results which agree. Evaluate repeatedly equivocal specimen using an alternate serologic procedure and/or reevaluate by drawing another sample one to three weeks later.
4. Specimens obtained too early during a primary infection may not have detectable levels of IgM antibody. If a primary infection is suspected, obtain another specimen in seven to 14 days and test concurrently in the same assay with the original specimen to determine seroconversion.

1. Diagnostic Automation Inc. HSV-1 and/or HSV-2 IgM ELISA Results

Table 1 (Clinical Site 1)

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Lot A</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Lot B</th>
<th>Mean Ratio</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Specimens</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Negative Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivocal Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 (Clinical Site 2)

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Lot A</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Lot B</th>
<th>Mean Ratio</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Specimens</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Negative Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivocal Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 (Clinical Site 3)

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Lot A</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Lot B</th>
<th>Mean Ratio</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Specimens</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Negative Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivocal Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** B. Reproducibility

Reproducibility was determined in-house using the same specimens. Briefly, six specimens were tested; values ranging from strong positive to negative. In addition to these six panel members, the kit positive control and the kit negative control were included as two additional precision members. Each specimen was tested in triplicate, once per day, on each of three days. The resulting data was used to calculate both intra and inter-assay precision.

Intra-Assay (n=24)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Mean Ratio</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9</td>
<td>1.8</td>
<td>3.0</td>
<td>1.7</td>
<td>3.1</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>1.9</td>
<td>3.3</td>
<td>1.8</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>4.1</td>
<td>2.1</td>
<td>4.2</td>
<td>2.0</td>
<td>4.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Inter-Assay (n=24)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Mean Ratio</th>
<th>CV</th>
<th>Mean Ratio</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>1.8</td>
<td>3.8</td>
<td>1.7</td>
<td>3.9</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>4.2</td>
<td>1.9</td>
<td>4.3</td>
<td>1.8</td>
<td>4.4</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>5.1</td>
<td>2.0</td>
<td>5.2</td>
<td>1.9</td>
<td>5.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Note: Please be advised that ‘relative’ refers to the comparison of this assay’s results to that of a similar assay. There was not an attempt to correlate the assay’s results with disease presence or absence. No judgement can be made on the comparison assay’s accuracy to predict disease.
C. Cross Reactivity
To investigate the potential for positive reactions due to cross reactive antibodies, twenty-four specimens which were IgM reactive for various viral antibodies (EBV-EA, EBV-VCA, CMV and Rubella) were tested on the HSV-1 and/or –2 IgM test system. Eighteen of twenty-four (18/24) were negative for HSV-1 and/or -5 IgM activity, while six of twenty-four (6/24) were positive.

With respect to the positive specimens, four were from the EBV-VCA group and two were from the CMV group. IFA were run on the positives to confirm reactivity with HSV-1 and - 2. Only one (from the EBV-VCA group) was positive on IFA.

QUALITY CONTROL

1. Each time the assay is run the Calibrator must be run in triplicate. A reagent blank, Negative Control, and Positive Control must also be included in each assay.
2. Calculate the mean of the three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.
3. The mean OD value for the Calibrator and the OD values for the Positive and Negative Controls should fall within the following ranges:

<table>
<thead>
<tr>
<th>OD Range</th>
<th>Negative Control</th>
<th>Calibrator</th>
<th>Positive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>≤ 0.250</td>
<td>≥ 0.300</td>
<td>≥ 0.500</td>
</tr>
</tbody>
</table>

a. The OD of the Negative Control divided by the mean OD of the Calibrator should be ≤ 0.9.
b. The OD of the Positive Control divided by the mean OD of the Calibrator should be ≥ 1.25.
c. If the above conditions are not met the test should be considered invalid and should be repeated.

4. The Positive Control and Negative Control are intended to monitor for substantial reagent failure and will not ensure precision at the assay cut-off.
5. Additional controls may be tested according to guidelines or requirements of local, state, and/or federal regulations or accrediting organizations.
6. Refer to CLSI document C24: Statistical Quality Control for Quantitative Measurements for guidance on appropriate QC practices.

LIMITATIONS OF PROCEDURE
1. A negative result does not rule out a primary or reactivated infection with HSV-1 or HSV-2 because samples may have been obtained too early in the course of infection, or IgM titers may have declined below detectable levels.
2. HSV specific IgG antibody may compete with IgM for binding sites and cause false negative results. Rheumatoid factor, if present along with HSV specific IgG, will cause false positive results. The sample diluent contains an absorbent which will remove IgG from the test specimens, and significantly reduce the incidence of false results.
3. Heterotypic IgM antibody responses may occur in patients infected with Epstein-Barr virus and give false positive results in the HSV-1&2 IgM ELISA test systems.
4. HSV specific IgM antibody may reappear during reactivation of HSV infection. (1-3).
5. Results of the DAI HSV-1&2 ELISA test systems are not by themselves diagnostic and should be interpreted in light of the patients clinical condition and the results of other diagnostic procedures.
6. In immunocompromised patients, the ability to produce an IgM response may be impaired and HSV specific IgM may be falsely negative during an active infection.
7. The continued presence or the level of antibody cannot be used to determine the success or failure of therapy.
8. Performance characteristics have not been established for neonates, infants or on cord blood.
9. The assay performance characteristics have not been established for visual result determination.
10. The DAI HSV-1&2 ELISA test systems are not intended to replace virus isolation and/or identification.
11. Due to commonly shared antigens, infections with one type of HSV in the presence of antibody to the heterologous type, may produce an anamnestic response with the pre-existing antibody to become more elevated than the antibody titer of the infective agent of the current infection. Therefore, definitive diagnosis of HSV typing should be made by viral isolation.
12. The assay performance characteristics have not been established for matrices other than serum.
13. The prevalence of the analyte will affect the assay’s predictive value.

EXPECTED VALUES

To establish or estimate the expected reactivity rate, the 219 specimens, which were tested at the two clinical sites, were analyzed. This represented two groups of specimens: 114 clinical specimens which were sent to the lab for routine HSV serological analysis, and 105 random normal donor specimens. With respect to the clinical population, 48/114 (42.1%) were positive, 56/114 (49.1%) were negative, and 10/114 (8.8%) were equivocal. With respect to the normal population, 22/105 (21.0%) were positive, 70/104 (66.7%) were negative, and 13/105 (12.4%) were equivocal.

STORAGE
1. Store the unopened kit between 2° and 8°C.
2. Coated microwell strips: Store between 2° and 8°C. Extra strips should be immediately resealed with desiccant and returned to proper storage. Strips are stable for 60 days after the envelope has been opened and properly resealed and the indicator strip on the desiccant pouch remains blue.
3. Conjugate: Store between 2° and 8°C. DO NOT FREEZE.
4. Calibrator, Positive Control and Negative Control: Store between 2° and 8°C.
5. TMB: Store between 2° and 8°C.
6. Wash Buffer concentrate (10X): Store between 2° and 25°C. Diluted wash buffer (1X) is stable at room temperature (20° to 25° C) for up to 7 days or for 30 days between 2° and 8°C.
REFERENCES

DAI CODE #