AccuDiag™
Vitamin B12
ELISA Kit

<table>
<thead>
<tr>
<th>Test</th>
<th>Vitamin B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Delayed Linked Immunosorbent ELISA</td>
</tr>
<tr>
<td>Principle</td>
<td>Delayed Competitive ELISA</td>
</tr>
<tr>
<td>Sample</td>
<td>50 µl serum or plasma</td>
</tr>
<tr>
<td>Total Time</td>
<td>12 Months from the manufacturing date</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>12 Months from the manufacturing date</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>70.13 pg/ml</td>
</tr>
</tbody>
</table>

INTENDED USE
The Diagnostic Automation, Inc. Vitamin B12 ELISA is the Quantitative Determination of Vitamin B12 Concentration in Human Serum by a Microplate Enzyme Immunoassay, Colorimetric.

SUMMARY AND EXPLANATION
Vitamin B12 is one of the nine water soluble vitamins important for healthy body functioning. The most important roles Vitamin B-12 plays in the human body are in the formation of red blood cells and the formation of the myelin sheath around the nerves. Since the effects are seen in body systems with a large range of function, the symptoms of Vitamin B-12 deficiency can sometimes be very ambiguous. A deficiency may also take from months to years to manifest depending on the cause and severity.

Two of the most common causes of Vitamin B-12 deficiency are diet and age. Because most sources of dietary Vitamin B-12 come from animals, vegans who do not efficiently supplement their diet are at risk. The elderly community is also at high risk because of their diet, as well as the less efficient functioning of their digestive system.

Intake of Vitamin B-12 starts by ingestion and then digestion by saliva. Once reaching the gut, Vitamin B-12 bound to proteins in food are released by the acids present. The B12 can then bind the Intrinsic factor. Once bound to IF, Vitamin B-12 can then bind the Intrinsic factor. Once bound to IF, Vitamin B-12 can then bind the Intrinsic factor. Once bound to IF, Vitamin B-12 plays into the formation of red blood cells and the formation of the myelin sheath around the nerves. Since the effects are seen in body systems with a large range of function, the symptoms of Vitamin B-12 deficiency can sometimes be very ambiguous. A deficiency may also take from months to years to manifest depending on the cause and severity.

Two very useful tests to distinguish between Vitamin B-12 deficiency and folate deficiency are methylmalonyl CoA (MMA) and homocysteine (hcy). Both deficiencies are represented by similar symptoms; however, even though both show increased levels of homocysteine, only Vitamin B-12 deficiency causes an increase in methylmalonyl CoA. The increase in levels of methylmalonyl CoA and homocysteine is thought to be the root cause of any symptoms that accompany a Vitamin B-12 deficiency. High levels of these two analytes in the blood causing increased apoptosis. In turn, vascular disease results in the form of atherosclerosis, coronary heart disease and/or neurodegeneration (ex. Parkinson’s Disease)

TEST PRINCIPLE
Delayed Competitive Enzyme Immunoassay (TYPE 9): The essential reagents required for an enzyme immunoassay include antibody, enzyme-antigen conjugate and native antigen. Upon mixing the biotinylated antibody with a serum containing the antigen, a reaction results between the antigen and the antibody. The interaction is illustrated by the following equation:

\[\text{Ag} + \text{Ab} \rightleftharpoons \text{AgAb} \]

\[\text{Ab} = \text{Biotinylated antibody} \]

\[\text{Ag} = \text{Antigen (Variable Quantity)} \]

\[\text{AgAb} = \text{Immune Complex} \]

After a short incubation, the enzyme conjugate is added (This delayed addition permits and increase in sensitivity for low concentration samples). Upon the addition of the enzyme conjugate, the competition reaction results between the enzyme analog and the antigen in the sample for a limited number of antibody binding sites (not consumed in the first incubation).

\[\text{EnzAg} + \text{Ag} + \text{rAb} \rightleftharpoons \text{AgAb} + \text{EnzAgAb} \]

\[\text{Enz} = \text{Enzyme-antigen Conjugate (Constant Quantity)} \]

\[\text{EnzAg} = \text{Enzyme-antigen Conjugate-Antibody Complex} \]

\[\text{rAb} = \text{Biotinylated antibody not reacted in first incubation} \]

\[K_a = \text{Rate Constant of Association} \]

\[K_d = \text{Rate Constant of Disassociation} \]

\[K = K_a / K_d = \text{Equilibrium Constant} \]

A simultaneous reaction between the biotin attached to the antibody and the streptavidin immobilized on the microwell occurs. These effects the separation of the antibody bound fraction after decantation or aspiration.

\[\text{AgAb} + \text{EnzAgAb} + \text{Streptavidin-w} \rightleftharpoons \text{Immmobilized complex} \]

\[\text{Streptavidin-w} = \text{Streptavidin immobilized on well} \]

\[\text{Immobilized complex} = \text{sandwich complex bound to the solid surface} \]

The enzyme activity in the antibody bound fraction is inversely proportional to the native antigen concentration. By utilizing several different serum references of known antigen concentration, a dose response curve can be generated from which the antigen concentration of an unknown can be ascertained.

MATERIALS AND COMPONENTS
Materials provided with the test kits
1. Vitamin B12 Calibrators – 1ml/vial – Icons A-F
 Six (6) vials of human serum albumin reference for Vitamin B-12 at concentrations of 0 (A), 100 (B), 200 (C), 400 (D), 1000 (E), and 2000 (F) in pg/mL. A preservative has been added. Store at 2 – 8 °C. The calibrators can be
expressed in molar concentrations (pM/L) by multiplying by 0.738. For example: 100 pg/ml x 0.738 = 73.8 pM/L.

2. Vitamin B-12 Enzyme Reagent – 7 ml/vial
One (1) vial of Vitamin B-12 (Analog) – horseradish peroxidase (HRP) conjugate in a protein-stabilizing matrix. Store at 2 – 8 ºC.

3. Vitamin B-12 Biotin Reagent – 7 ml/vial
One (1) vial of reagent contains anti-Vitamin B-12 biotinylated purified rabbit IgG conjugate in buffer, blue dye and preservative. Store at 2 – 8 ºC.

4. Streptavidin Coated Plate – 96 wells
One 96-well microplate coated with 1.0 µg/ml streptavidin and packaged in an aluminum bag with a drying agent. Store at 2 – 8 ºC.

5. Wash Solution Concentrate – 20ml/vial
One (1) vial contains a surfactant in buffered saline. A preservative has been added. Store at 2 – 8 ºC.

6. Substrate Reagent – 12 ml/vial
One (1) bottle contains tetramethylbenzidine (TMB) and hydrogen peroxide (H₂O₂) in buffer. Store at 2 – 8 ºC.

7. Stop Solution (8 ml / vial)
One (1) vial contains a strong acid (H₂SO₄). Store at 2-8 ºC.

8. Releasing Agent – 14ml/vial
One (1) vial contains a strong base (sodium hydroxide) and potassium cyanide.

9. Stabilizing Agent – 7 ml/vial
One (1) vial contains tris 2-carboxyethyl phosphine (TCEP) solution.

10. Neutralizing Buffer – 7 ml / vial
One (1) vial contains buffer with dye that reduces the pH of sample extraction.

11. Product Insert

Note 1: Do not use reagents beyond the kit expiration date.

Note 2: Avoid extended exposure to heat and light. Opened reagents are stable for sixty (60) days when stored at 2-8 ºC. Kit and component stability are identified on the label.

Note 3: Above reagents are for a single 96- well microplate.

Materials required but not provided

1. Pipette capable of delivering 0.050 & 0.100ml (50 & 100µl) with a precision of better than 1.5 %.
2. Dispenser(s) for repetitive deliveries of 0.100 and 0.350ml (100 & 350µl) volumes with a precision of better than 1.5%.
3. Adjustable volume (200 -1000µl) dispenser(s) for conjugate.
5. Microplate washer or a squeeze bottle (optional).
7. Absorbent Paper for blotting the microplate wells.
8. Plastic wrap or microplate cover for incubation steps.
9. Vacuum aspirator (optional) for wash steps.
10. Timer.
11. Quality control materials.

REAGENT PREPARATION

1. **Wash Buffer**
Dilute contents of wash solution to 1000 ml with distilled or deionized water in a suitable storage container. Diluted buffer can be stored at room temperature (2-30 ºC) for up to 60 days.

2. **EXTRACTION AGENT**
Add an aliquot of the stabilizing agent in order to prepare a 1/40 (stabilizing agent / releasing agent) dilute solution. For example, to make 4ml (4000µl), add 0.100ml (100 µl) stabilizing agent to 3.9ml (3900µl) releasing agent.

3. **SAMPLE EXTRACTION**
Obtain enough test tubes for preparation of all patient samples, controls, and serum references. Dispense 0.100ml (100µl) of each sample into individual test tubes. Pipette 0.050 ml (50 µL) of the prepared extraction agent to each test tube, shaking after each addition. Let the reaction proceed for 15 min. At end of the 15 min, dispense 0.050 ml (50 µL) of the neutralizing buffer, vortex (see note 3).

SPECIMEN COLLECTION AND PREPARATION

- The specimens shall be blood, serum in type, and taken with the usual precautions in the collection of venipuncture samples. For accurate comparison to establish normal values, a fasting morning serum sample should be obtained. The blood should be collected in a red top (with or without gel additives) venipuncture tube(s) with no anti-coagulants. Allow the blood to clot for serum samples. Centrifuge the specimen to separate the serum from the cells.
- In patients receiving therapy with high biotin doses (i.e. >5mg/day), no sample should be taken until at least 8 hours after the last biotin administration, preferably overnight to ensure fasting sample.
- Samples may be refrigerated at 2-8 ºC for a maximum period of five (5) days.
 - If the specimen(s) cannot be assayed within this time, the sample(s) may be stored at temperatures of -20 ºC for up to 30 days. Avoid use of contaminated devices. Avoid repetitive freezing and thawing. When assayed in duplicate, 0.100ml (100µl) of the specimen is required.

ASSAY PROCEDURE

Before proceeding with the assay, bring all reagents, serum references and controls to room temperature (20 -27 ºC)

Test procedure should be performed by a skilled individual or trained professional

1. Format the microplates’ wells for each serum reference calibrator, control and patient specimen to be assayed in duplicate. Replace any unused microwell strips back into the aluminum bag, seal and store at 2-8 ºC.
2. Pipette 0.050 ml (50µl) of the appropriate extracted Vitamin B12 calibrator, control or specimen into the assigned well.
3. Add 0.050 ml (50µl) of the Vitamin B-12 Biotin Reagent to all wells.
4. Mix the microplate gently for 20-30 seconds to mix.
5. Cover and incubate for 45 minutes at room temperature.
6. Add 0.050 ml (50µl) of Vitamin B-12 Enzyme Reagent to all wells. Add directly on top the reagent dispensed in the wells.
7. Mix the microplate gently for 20-30 seconds to mix.
8. Cover and incubate for 30 minutes at room temperature.
9. Discard the contents of the microplate by decantation or aspiration. If decanting, blot the plate dry with absorbent paper.
10. Add 0.350ml (350µl) of wash buffer (see Reagent Preparation Section), decant (tap and blot) or aspirate. Repeat two (2) additional times for a total of three (3) washes.
11. An automatic or manual plate washer can be used. Follow the manufacturer’s instruction for proper usage. If a squeeze bottle is employed, fill each well by depressing the container (avoid air bubbles) to dispense the wash. Decant the wash and repeat two (2) additional times.
12. Add 0.100 ml (100 µl) of substrate reagent to all wells. Always add reagents in the same order to minimize reaction time differences between wells.
DO NOT SHAKE THE PLATE AFTER SUBSTRATE ADDITION.

1. Incubate at room temperature for twenty (20) minutes.
2. Add 0.050 ml (50 μl) of stop solution to each well and gently mix for 15-20 seconds. Always add reagents in the same order to minimize reaction time differences between wells.
3. Read the absorbance in each well at 450 nm (using a reference wavelength of 620 – 630 nm). The results should be read within fifteen (15) minutes of adding the stop solution.

Note: Dilute the samples suspected of concentrations higher than 2000 pg/ml 1:5 and 1:10 with Vitamin B12 0 pg/ml calibrator and re-assay.

ASSAY PERFORMANCE

1. It is important that the time of reaction in each well is held constant to achieve reproducible results.
2. Pipetting of samples should not extend beyond ten (10) minutes to avoid assay drift.
3. Highly lipemic, hemolyzed or grossly contaminated specimen(s) should not be used.
4. If more than one (1) plate is used, it is recommended to repeat the dose response curve.
5. The addition of substrate solution initiates a kinetic reaction, which is terminated by the addition of the stop solution. Therefore, the substrate and stop solution should be added in the same sequence to eliminate any time-deviation during reaction.
6. Plate readers measure vertically. Do not touch the bottom of the wells.
7. Failure to remove adhering solution adequately in the aspiration or decantation wash step(s) may result in poor replication and spurious results.
8. Use components from the same lot. No intermixing of reagents from different batches.
9. Accurate and precise pipetting, as well as following the exact time and temperature requirements prescribed are essential. Any deviation from Diagnostic Automation, Inc. IFU may yield inaccurate results.
10. All applicable national standards, regulations and laws, including, but not limited to, good laboratory procedures, must be strictly followed to ensure compliance and proper device usage.
11. It is important to calibrate all the equipment e.g. Pipettes, Readers, Washers and/or the automated instruments used with this device and to performed routine preventative maintenance.

Interpretation

1. Measurements and interpretation of results must be performed by a skilled individual or trained professional.
2. Laboratory results alone are only one aspect for determining patient care and should not be the sole basis for therapy, particularly if the results conflict with other determinants.
3. The reagents for the test system procedure have been formulated to eliminate maximal interference; however, potential interaction between rare serum specimens and test reagents can cause erroneous results. Heterophilic antibodies often cause these interactions and have been known to be problems for all kinds of immunoassays. (Boscato LM Stuart MC. ‘Heterophilic antibodies: a problem for all immunoassays’ Clin.Chem. 1988;34:27-33.) For diagnostic purposes, the results from this assay should be used in combination with clinical examination, patient history, and all other clinical findings.
4. For valid test results, adequate controls and other parameters must be within the listed ranges and assay requirements.
5. If test kits are altered, such as by mixing parts of different kits, which could produce false test results, or if results are incorrectly interpreted, Diagnostic Automation, Inc. shall have no liability.
6. If computer-controlled data reduction is used to interpret the results of the test, it is imperative that the predicted values for the calibrators fall within 10% of the assigned concentrations.

RESULTS

A dose response curve is used to ascertain the concentration of Vitamin B12 in unknown specimens.

1. Record the absorbance obtained from the printout of the microplate reader as outlined in Example 1.
2. Plot the absorbance for each duplicate serum reference versus the corresponding Vitamin B12 concentration in pg/ml on linear graph paper (do not average the duplicates of the serum references before plotting).
3. Connect the points with a best-fit curve.
4. To determine the concentration of Vitamin B12 for an unknown, locate the average absorbance of the duplicates for each unknown on the vertical axis of the graph, find the intersecting point on the curve, and read the concentration (in pg/ml) from the horizontal axis of the graph (the duplicates of the unknown may be averaged as indicated). In the following example, the average absorbance (1.53) intersects the dose response curve at (391.4 pg/ml) Vitamin B-12 concentration (See Figure 1).

Note: Computer data reduction software designed for ELISA assay may also be used for the data reduction. If such software is utilized, the validation of the software should be ascertained.

<table>
<thead>
<tr>
<th>Sample L.D.</th>
<th>Well Number</th>
<th>Abs (A)</th>
<th>Mean Abs (B)</th>
<th>Value (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal A</td>
<td>A1</td>
<td>2.898</td>
<td>2.89</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>2.891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal B</td>
<td>C1</td>
<td>2.495</td>
<td>2.45</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>2.415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal C</td>
<td>E1</td>
<td>2.107</td>
<td>2.06</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>2.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal D</td>
<td>G1</td>
<td>1.544</td>
<td>1.51</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>H1</td>
<td>1.468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal E</td>
<td>A2</td>
<td>0.662</td>
<td>0.63</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>0.604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal F</td>
<td>C2</td>
<td>0.263</td>
<td>0.25</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>0.239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 1</td>
<td>G2</td>
<td>1.479</td>
<td>1.53</td>
<td>391.4</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>1.573</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The above data and table below is for example only. Do not use it for calculating your results.

Q.C. PARAMETERS

In order for the assay results to be considered valid the following criteria should be met:
1. The absorbance (OD) of calibrator 0 pg/ml should be ≥ 1.8.
2. Four out of six quantity control pools should be within the established ranges.
QUALITY CONTROL

- Each laboratory should assay controls at levels in the low, normal, and high range for monitoring assay performance. These controls should be treated as unknowns and values determined in every test procedure performed. Quality control charts should be maintained to follow the performance of the supplied reagents. Pertinent statistical methods should be employed to ascertain trends. The individual laboratory should set acceptable assay performance limits. In addition, maximum absorbance should be consistent with past experience. Significant deviation from established performance can indicate unnoticed change in experimental conditions or degradation of kit reagents. Fresh reagents should be used to determine the reason for the variations.

EXPECTED VALUES

In agreement with established reference intervals for a “normal” population the expected ranges for the Vitamin B-12 ELISA Test system are detailed in Table 1.

Table 1
Expected Values for the Vitamin B-12 Test System

<table>
<thead>
<tr>
<th>Population</th>
<th>Pg/ml</th>
<th>Pmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>160 - 1300</td>
<td>118 - 959</td>
</tr>
<tr>
<td>Adult</td>
<td>200 - 835</td>
<td>148 - 616</td>
</tr>
<tr>
<td>Adult > 60 y</td>
<td>110 - 800</td>
<td>81 - 590</td>
</tr>
</tbody>
</table>

It is important to keep in mind that establishment of a range of values which can be expected to be found by a given method for a population of “normal” persons is dependent upon a multiplicity of factors: the specificity of the method, the population tested and the precision of the method in the hands of the analyst. For these reasons each laboratory should depend upon the range of expected values established by the manufacturer only until an in-house range can be determined by the analysts using the method with a population indigenous to the area in which the laboratory is located.

PERFORMANCE CHARACTERISTICS

Precision

The within and between assay precision of the Vitamin B12 Diagnostic Automation, Inc. Microplate ELISA Test System were determined by analyses on three different levels of pool control sera. The number, mean values, standard deviation and coefficient of variation for each of these control sera are presented in Table 2 and Table 3.

Table 2
Within Assay Precision (Values in pg/ml)

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>X</th>
<th>σ</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>20</td>
<td>334.8</td>
<td>24.3</td>
<td>7.3%</td>
</tr>
<tr>
<td>Normal</td>
<td>20</td>
<td>484.9</td>
<td>17.6</td>
<td>3.6%</td>
</tr>
<tr>
<td>High</td>
<td>20</td>
<td>925.3</td>
<td>28.3</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

Table 3
Between Assay Precision (Values in pg/ml)

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>X</th>
<th>σ</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>18</td>
<td>314.9</td>
<td>49.4</td>
<td>15.7%</td>
</tr>
<tr>
<td>Normal</td>
<td>18</td>
<td>441.3</td>
<td>46.7</td>
<td>10.6%</td>
</tr>
<tr>
<td>High</td>
<td>18</td>
<td>913.1</td>
<td>39.4</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin</td>
<td>0.0003</td>
</tr>
<tr>
<td>Rheumatoid Factor</td>
<td>0.0008</td>
</tr>
<tr>
<td>Cobinamide</td>
<td><0.0001</td>
</tr>
<tr>
<td>Lepemia</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Sensitivity

The Vitamin B12 Microplate ELISA Test System has a sensitivity of 70.13 pg/ml. The sensitivity was ascertained by determining the variability of the 0 pg/ml serum calibrator and using the 2σ (95 % certainty) statistic to calculate the minimum dose.

Accuracy

The Vitamin B 12 Microplate ELISA Test system was compared with a reference method. Biological specimens from low, normal and relatively high vitamin B12 level populations were used (The values ranged from 156 pg/ml – 1830 pg/ml). The total number of such specimens was 56. The least square regression equation and the correlation coefficient were computed for this Vitamin B12 ELISA in comparison with the reference method. The data obtained is displayed in Table 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean (x)</th>
<th>Least Square Regression Analysis</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Method (Y)</td>
<td>654.3</td>
<td>y=1.0186x-48.82</td>
<td>0.9506</td>
</tr>
<tr>
<td>Reference (X)</td>
<td>690.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only slight amounts of bias between this method and the reference method are indicated by the closeness of the mean values. The least square regression equation and correlation coefficient indicates excellent method agreement.

Specificity

The % cross reactivity of the Vitamin B12 antibody to selected substances was evaluated by adding the interfering substance to a serum matrix at various concentrations. The cross-reactivity was calculated by deriving a ratio between dose of interfering substance to dose of Vitamin B12 needed to displace the same amount of labeled analog.

PRECAUTION

1. For In Vitro Diagnostic Use.
2. Not for Internal or External Use in Humans or Animals.

- All products that contain human serum have been found to be non-reactive for Hepatitis B Surface Antigen, HIV 1 & 2 and HCV Antibodies by FDA required tests. Since no known test can offer complete assurance that infectious agents are absent, all human serum products should be handled as potentially hazardous and capable of transmitting disease. Good laboratory procedures for handling blood products can be found in the Center Disease Control / National Institute of Health, “ Biosafety in Microbiological and Biomedical Laboratories, “ 2nd Edition, 1988, HHS Publication No. (CDC) 88-8395.

- Safe Disposal of kit components must be according to local regulatory and statutory requirements.

*As measured in ten experiments in duplicate over a ten day period.
REFERENCES